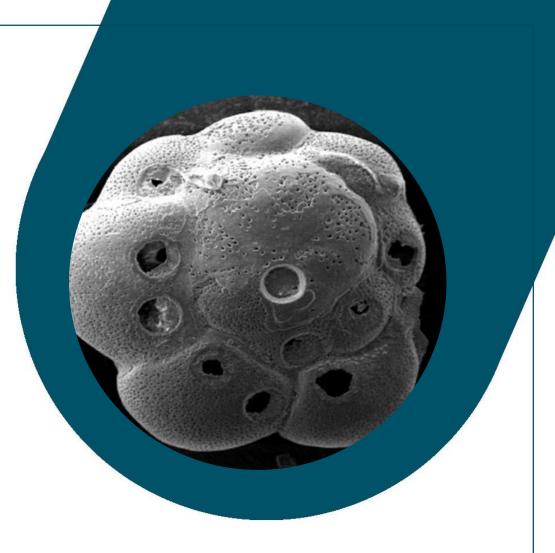


# **precision.accuracy.trust**

Towards improved in situ microanalysis of boron & boron isotopes in carbonates using Nano-Pellets as reference materials

S. Nordstad, W. Boer, G.-J. Reichart, B. Hönisch

Goldschmidt Virtual 2021 Workshop


www.my-standards.com

Advances and current directions for boron isotopic and elemental applications

#### Introduction

• A lack of matrix-matched reference materials (RM) for *in situ* microanalysis is generally recognised (Miliszkiewicz et al. 2014)

• Commonly used soda glasses (NIST series), while ubiquitous cause matrixrelated offsets in analytical data (Jochum et al. 2019)



• Nano-particulate pressed powder pellets have been shown to be a promising remedy for this issue (Jochum et al. 2019)



#### Introduction

• Nano-Pellets can be pressed without any binders

- The small particle size results in improved homogeneity and ablation behaviour compared to conventional pressed pellets
- Natural zonation and other heterogeneities are eliminated

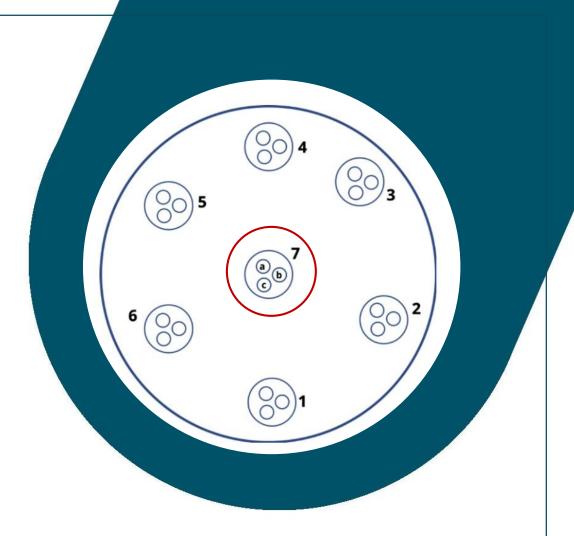




## Candidate RM N°1

 NIOZ Foraminifera House Standard N° 2 Nano Pellet (NFHS-2-NP)

 Forams from calcareous ooze in gravity core from the Walvis Ridge at 2878 m water depth


- Characterised for major- and trace elements as well as isotopic ratios using solution techniques (ICP-MS, ICP-OES, TIMS, MC-ICP-MS, XRF)
- Homogeneity investigated using LA-ICP-MS at NIOZ





• ASTM Guide E 826-14 methodology

• Further data evaluation following ISO-Guide 35



• Modus operandi for homogeneity testing of microanalytical RM



#### B/Ca [µmol/mol]

|          | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | Zone 6 | Zone 7 | Avg. | RSD-% |
|----------|--------|--------|--------|--------|--------|--------|--------|------|-------|
| Run 1 a) | 75,2   | 77,9   | 76,9   | 78,8   | 79,7   | 77,4   | 82,7   | 78,4 | 3,05  |
| Run 2 b) | 75,7   | 74,7   | 79,8   | 79,0   | 75,8   | 78,2   | 80,7   | 77,7 | 2,99  |
| Run 3 c) | 78,2   | 78,3   | 77,3   | 79,5   | 75,7   | 78,8   | 75,6   | 77,6 | 1,94  |
| Avg.     | 76,4   | 77,0   | 78,0   | 79,1   | 77,1   | 78,1   | 79,7   |      |       |
| RSD-%    | 2,07   | 2,62   | 1,99   | 0,48   | 2,96   | 0,92   | 4,60   |      |       |

• Overview of within-pellet homogeneity



#### ASTM E826-14 Evaluation

| Number of measurements prer Zone | 3  |
|----------------------------------|----|
| Number of Zones                  | 7  |
| degrees of freedom               | 12 |

| SSt | 2,59113E-05 |
|-----|-------------|
| SSb | 2,38367E-06 |
| SST | 8,24555E-05 |
| S   | 0,002124471 |
| q   | 4,88        |

• 0,005985631 0,003339656 maximum(t')-minimum(t')

- As long as the calculated "w" value is larger than the absolute value of "t<sup>'</sup>" the sample can be considered homogenous
- If this test should fail it is still within the rights of the manufacturer to consider if the achieved results are fit for purpose
- Objective measure of homogeneity



#### B/Ca [µmol/mol]

|          | Result 1 | Result 2 | Result 3 | Result 4 | Result 5 | Result 6 | Result 7 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Pellet 1 | 77,2     | 78,9     | 77,4     | 78,7     | 80,9     | 77,9     | 77,6     |
| Pellet 2 | 76,4     | 77,0     | 78,0     | 79,1     | 77,1     | 78,1     | 79,7     |
| Pellet 3 | 75,6     | 75,4     | 75,4     | 77,4     | 76,3     | 75,4     | 78,5     |
| Pellet 4 | 76,7     | 77,5     | 77,8     | 78,3     | 77,5     | 79,6     | 77,5     |

- Averaged results from each zone on each of the 4 Nano-Pellets
- Each certified reference material (ISO 17034) needs an uncertainty statement calculated from three components: *characterisation, homogeneity & stability*
- ISO Guide 35 shows how the uncertainty component for homogeneity can be



calculated

Uncertainty component

homogeneity for NFHS-2-

- [mmol/mol]  $0,000006 \quad s_{between}^2 = \frac{MS_{Between\ Groups} - MS_{Within\ Groups}}{Count}$ s<sup>2</sup> between 0,001  $s_{between} = \sqrt{s_{between}^2}$ Between-unit Std.dev. 0,001  $s_r = \sqrt{MS_{Within Groups}}$ **Repeatability Std.dev** 0,001 Uncertainty<sub>Homogeneity</sub> =  $\sqrt{s_r^2 + s_{between}^2}$ **Unc. Homogeneity** 
  - NP
    Amount of pellets tested insufficient according to ISO Guide 35 lack of lab-time due to COVID
  - General principle can be

shown



#### Boron in NFHS-2-NP

**Consensus value:** 

#### 74.0 [µmol/mol]

Uncertainty<sub>Characterisation</sub>:

4.0 [µmol/mol]

Uncertainty<sub>Homogeneity</sub>:

1.0 [µmol/mol]

Uncertainty<sub>Stability</sub>:

unknown



Goldschmidt Virtual 2021 Workshop

www.my-standards.com

Advances and current directions for boron isotopic and elemental applications

#### Boron in NFHS-2-NP - Stability

[µg/g]

Measurement on May 19<sup>th</sup> 2021:

**Measurement on May 25th 2021:** 

9.36 ± 0.70 [2SD] n = 21

9.51 ± 0.51 [2SD] n = 21

Quantified using NIST 610 & 612



#### Boron in NFHS-2-NP

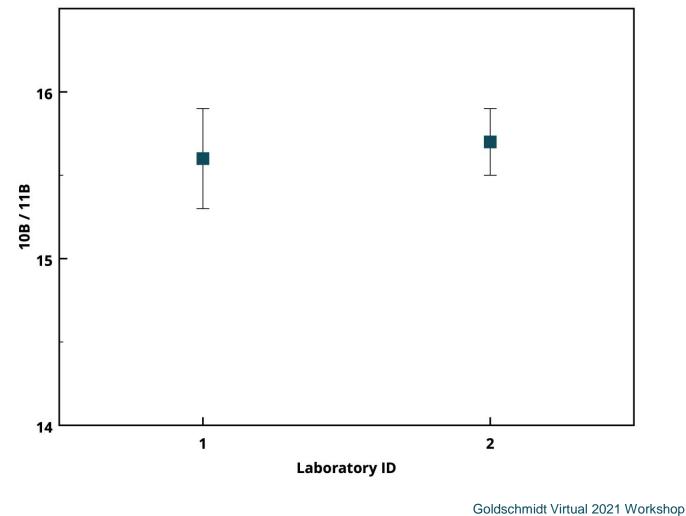
$$Uncertainty_{NFHS-2-NP} = k \times \sqrt{Unc._{Char}^{2} + Unc._{Hom}^{2} + Unc._{Stab}^{2}}$$

 $k = expansion factor_{Student's t-distribution}$ 

Uncertainty<sub>NFHS-2-NP</sub> = 2 × 
$$\sqrt{4.0_{Char}^2 + 1.0_{Hom}^2 + Unc._{Stab}^2}$$

**Assigned Value & expanded Uncertainty:** 

74,0 ± 8,0 [µmol/mol] 95 % CL




#### Boron Isotopes

- Characterised with MC-ICP-MS and TIMS
- Relative to NIST 951a
- All data not yet acquired
- So far limited LA-MC-ICP-MS to show homogeneity of boron isotopic value. Homogeneous elemental boron is encouraging



#### Characterisation until now



- Preliminary value : 15.64 ± 0.14 [95 % CL]
- More data acquired than shown here
- Data were inconsistent due to different

dissolution techniques



#### NFHS-2-NP Summary

 LA-ICP-MS analyses at NIOZ were able to show excellent homogeneity for boron, between and within Nano-Pellets

- Preliminary data on boron isotopes are already encouraging and will be improved by further analyses (LA-MC-ICP-MS & TIMS)
- First boron LA-MC-ICP-MS data received June 30<sup>th</sup>: 14.96 ± 0.6 (2SE) ‰



• Work on publication showing entire characterisation is on-going



## Candidate RM N°2

- NIOZ Boron Isotopic Standard-Nano Pellet (NBIS-2-NP)
- Mixture of 99.999 % pure CaCO<sub>3</sub> with NIST 951a: NBIS-1-NP
- Dilution of NBIS-1-NP with CaCO<sub>3</sub> to match natural concentration of foraminifera:

| 95 | 1a |
|----|----|
|    |    |

 Boron isotopic value and concentration investigated using MC-ICP-MS and LA-ICP-MS respectively

Goldschmidt Virtual 2021 Workshop

Sea Research

#### Homogeneity of elemental Boron

#### RSD [%]

|           | Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | Zone 6 | Zone 7 | Average RSD [%] | Conc. [µg/g] |
|-----------|--------|--------|--------|--------|--------|--------|--------|-----------------|--------------|
| NBIS-1-NP | 8,6    | 1,9    | 1,7    | 6,3    | 10,1   | 2,5    | 11,4   | 6,1             | 1842         |
| NBIS-2-NP | 7,4    | 6,3    | 19,7   | 14,6   | 2,8    | 16,9   | 9,9    | 11,1            | 8,9          |
| NBIS-3-NP | 2,0    | 11,2   | 3,3    | 14,4   | 12,9   | 7,4    | 3,6    | 7,8             | 192          |

- Less homogenous than NFHS-2-NP
- 9.95 g of CaCO<sub>3</sub> were mixed with 0.05 g of NBIS-1-NP large ratio and few boron "particles" in many CaCO<sub>3</sub> particles → NBIS-2-NP
- 9 g of CaCO<sub>3</sub> mixed with 1 g of NBIS-1-NP  $\rightarrow$  NBIS-3-NP
- Elemental heterogeneity does not necessarily negate isotopic homogeneity



#### Boron Isotopes - Initial Analysis

|                |           | δ <sup>11</sup> <b>B</b> | SD        |      |
|----------------|-----------|--------------------------|-----------|------|
|                |           | ‰                        | <u></u> ‰ |      |
| NBIS-1 NP      | U11784480 | -0.(                     | 06        | 0.22 |
| NBIS-1 NP, r.2 | U11784480 | -0.0                     | 09        | 0.26 |
| NBIS-2 NP      | U11784481 | 0.:                      | 31        | 0.58 |
| NBIS-2 NP, t.2 | U11784481 | 0.1                      | 16        | 0.51 |

- Commercial Laboratory
- Values statistically indistinguishable from "zero"
- High uncertainties
- More precise data



#### **NBIS-2-NP Summary**

 Initial analyses showed encouraging signs of having achieved a delta <sup>10</sup>B/<sup>11</sup>B value close to zero in CaCO<sub>3</sub>

- Elemental heterogeneity potential issue for isotopic ratio
- Further investigation using LA-MC-ICP-MS, and TIMS are on-going





# Thank You for Your attention

**Get in touch:** 

nordstad@my-standards.com

#### wim.boer@nioz.nl



Goldschmidt Virtual 2021 Workshop

Advances and current directions for boron isotopic and elemental applications





Goldschmidt Virtual 2021 Workshop

Advances and current directions for boron isotopic and elemental applications